Abstract

A continuous beam-steering solution for circularly polarized (CP) radial-line slot array (RLSA) antennas is presented and demonstrated with a fabricated prototype. The solution is based on the near-field meta-steering (NFMS) method, which is implemented through a pair of highly transmitting hybrid metasurfaces (HMs) that are placed above a high-gain CP RLSA antenna in the near-field region. Cells in HMs, unlike conventional metasurfaces (CMs), can provide exact or close to exact phase shift with transmission magnitude larger than −1 dB. This is achieved by combining the nonoverlapping phase ranges of two dramatically different phase-shifting cells. The RLSA is stationary, while the two HMs are rotated to steer the beam in a 2-D (azimuth and elevation) space. The measured results of the prototype demonstrate that the system can steer its beam to a maximum elevation angle of 40.6° with a maximum gain of 30.9 dBic. The axial ratio remained less than 3 dB in the 3 dB beamwidth even when the beam is steered. The height of the system is only 4.5 cm, which is much less than mechanically steered reflector antennas. Unlike electronically steered high-gain antenna arrays, this system requires only few watts of power only when rotating HMs and has zero power consumption when the beam is stationary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call