Abstract

We develop a new Bayesian split population survival model for the analysis of survival data with misclassified event failures. Within political science survival data, right-censored survival cases are often erroneously misclassified as failure cases due to measurement error. Treating these cases as failure events within survival analyses will underestimate the duration of some events. This will bias coefficient estimates, especially in situations where such misclassification is associated with covariates of interest. Our split population survival estimator addresses this challenge by using a system of two equations to explicitly model the misclassification of failure events alongside a parametric survival process of interest. After deriving this model, we use Bayesian estimation via slice sampling to evaluate its performance with simulated data, and in several political science applications. We find that our proposed “misclassified failure” survival model allows researchers to accurately account for misclassified failure events within the contexts of civil war duration and democratic survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.