Abstract
Several stochastic models of character change, when implemented in a maximum likelihood framework, are known to give a correspondence between the maximum parsimony method and the method of maximum likelihood. One such model has an independently estimated branch-length parameter for each site and each branch of the phylogenetic tree. This model--the no-common-mechanism model--has many parameters, and, in fact, the number of parameters increases as fast as the alignment is extended. We take a Bayesian approach to the no-common-mechanism model and place independent gamma prior probability distributions on the branch-length parameters. We are able to analytically integrate over the branch lengths, and this allowed us to implement an efficient Markov chain Monte Carlo method for exploring the space of phylogenetic trees. We were able to reliably estimate the posterior probabilities of clades for phylogenetic trees of up to 500 sequences. However, the Bayesian approach to the problem, at least as implemented here with an independent prior on the length of each branch, does not tame the behavior of the branch-length parameters. The integrated likelihood appears to be a simple rescaling of the parsimony score for a tree, and the marginal posterior probability distribution of the length of a branch is dependent upon how the maximum parsimony method reconstructs the characters at the interior nodes of the tree. The method we describe, however, is of potential importance in the analysis of morphological character data and also for improving the behavior of Markov chain Monte Carlo methods implemented for models in which sites share a common branch-length parameter.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have