Abstract

Background: Genome-wide association studies (GWASs) have identified hundreds of genetic variants associated with complex diseases, but these variants appear to explain very little of the disease heritability. The typical single-locus association analysis in a GWAS fails to detect variants with small effect sizes and to capture higher-order interaction among these variants. Multilocus association analysis provides a powerful alternative by jointly modeling the variants within a gene or a pathway and by reducing the burden of multiple hypothesis testing in a GWAS. Methods: Here, we propose a powerful and flexible dimension reduction approach to model multilocus association. We use a Bayesian partitioning model which clusters SNPs according to their direction of association, models higher-order interactions using a flexible scoring scheme and uses posterior marginal probabilities to detect association between the SNP set and the disease. Results: We illustrate our method using extensive simulation studies and applying it to detect multilocus interaction in Atherosclerosis Risk in Communities (ARIC) GWAS with type 2 diabetes. Conclusion: We demonstrate that our approach has better power to detect multilocus interactions than several existing approaches. When applied to the ARIC study dataset with 9,328 individuals to study gene-based associations for type 2 diabetes, our method identified some novel variants not detected by conventional single-locus association analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.