Abstract

This paper presents a Bayesian network model for estimating origin-destination matrices. Most existing Bayesian methods adopt prior OD matrixes, which are always troublesome to be obtained. Since transportation systems normally have stored large amounts of historical link flows, a Bayesian network model using these prior link flows is proposed. Based on some observed link flows, the estimation results are updated. Under normal distribution assumption, the proposed Bayesian network model considers the level of total traffic flow, the variability of link flows, and the violation of the traffic flow conservation law. Both the point estimation and the corresponding probability intervals can be provided by this model. To solve the Bayesian network model, a specific procedure which can avoid matrix inversion is proposed. Finally, a numerical example is given to illustrate the proposed Bayesian network method. The results show that the proposed method has a high accuracy and practical applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.