Abstract

In recent years, the analysis of human interaction data has led to the rapid development of graph embedding methods. For link-based classification problems, topological information typically appears in various machine learning tasks in the form of embedded vectors or convolution kernels. This paper introduces a Bayesian graph embedding model for such problems, integrating network reconstruction, link prediction, and behavior prediction into a unified framework. Unlike the existing graph embedding methods, this model does not embed the topology of nodes or links into a low-dimensional space but sorts the probabilities of upcoming links and fuses the information of node topology and data domain via sorting. The new model integrates supervised transaction predictors with unsupervised link prediction models, summarizing local and global topological information. The experimental results on a financial trading dataset and a retweet network dataset demonstrate that the proposed feature fusion model outperforms the tested benchmarked machine learning algorithms in precision, recall, and F1-measure. The proposed learning structure has a fundamental methodological contribution and can be extended and applied to various link-based classification problems in different fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.