Abstract
Many real-world data are considered as graphs, such as computer networks, social networks and protein-protein interaction networks. Graph embedding methods are powerful tools for representing large graphs in various domains. A graph embedding method projects the components of a graph, such as its nodes or edges, into a vector space with a lower dimensionality than the adjacency matrix of the graph, and aims to preserve the characteristics of the graph. The generated embedding vectors have been utilized in various graph mining applications such as node classification, link prediction and anomaly detection. Despite the wide success of the graph embedding methods, little study has been done to facilitate a better understanding of the graph embeddings. In this paper, inspired by advancements in interpreting word embeddings, we propose two interpretability measures to quantify the interpretability of graph embeddings by leveraging useful network centrality properties and perform comparisons of different graph embedding methods. Using these scores, we can provide insights into the representational power of graph embedding methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.