Abstract
The generalized extreme value (GEV) distribution is known as the limiting result for the modeling of maxima blocks of size n, which is used in the modeling of extreme events. However, it is possible for the data to present an excessive number of zeros when dealing with extreme data, making it difficult to analyze and estimate these events by using the usual GEV distribution. The Zero-Inflated Distribution (ZID) is widely known in literature for modeling data with inflated zeros, where the inflator parameter w is inserted. The present work aims to create a new approach to analyze zero-inflated extreme values, that will be applied in data of monthly maximum precipitation, that can occur during months where there was no precipitation, being these computed as zero. An inference was made on the Bayesian paradigm, and the parameter estimation was made by numerical approximations of the posterior distribution using Markov Chain Monte Carlo (MCMC) methods. Time series of some cities in the northeastern region of Brazil were analyzed, some of them with predominance of non-rainy months. The results of these applications showed the need to use this approach to obtain more accurate and with better adjustment measures results when compared to the standard distribution of extreme value analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have