Abstract

Many deoxyribonucleic acid (DNA) sequences display compositional heterogeneity in the form of segments of similar structure. This article describes a Bayesian method that identifies such segments by using a Markov chain governed by a hidden Markov model. Markov chain Monte Carlo (MCMC) techniques are employed to compute all posterior quantities of interest and, in particular, allow inferences to be made regarding the number of segment types and the order of Markov dependence in the DNA sequence. The method is applied to the segmentation of the bacteriophage lambda genome, a common benchmark sequence used for the comparison of statistical segmentation algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.