Abstract

Renewable energy sources (RESs) have been extensively integrated into modern power systems to meet the increasing worldwide energy demand as well as reduce greenhouse gas emission. As a result, the task of frequency regulation previously provided by synchronous generators is gradually taken over by power converters, which serve as the interface between the power grid and RESs. By regulating power converters as virtual synchronous generators (VSGs), they can exhibit similar frequency dynamic response. However, unlike synchronous generators, power converters are incapable of absorbing/delivering any kinetic energy, which necessitates extra energy storage systems (ESSs). Nonetheless, the implementation and coordination control of ESSs in VSGs have not been investigated by previous research. To fill this research gap, this letter proposes a hybrid ESS (HESS) consisting of a battery and an ultracapacitor to achieve the power management of VSGs. Through proper control, the ultracapacitor automatically tackles the fast-varying power introduced by inertia emulation while the battery implements the remaining parts of a VSG and only compensates for relatively long-term power fluctuations with slow dynamics. In this way, the proposed HESS allows reduction of the battery power fluctuations along with its changing rate. Finally, experimental results are presented to validate the proposed concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.