Abstract

Optimization of indeterminate frames involves non-convex stress constraint functions which form a non-convex design space that results in multiple local minima, unknown in number to begin with. The current state-of-the-art in this field recommends employment of different arbitrary initial designs to have a reasonable assurance of reaching every local minimum which, under a particular load, is associated with a specific material distribution. In this study a basis is laid down for (a) determination, at the very outset, of the number of local minima that possibly may exist in a frame of symmetric topography, (b) definition, in terms of relative member stiffnesses, of the material distribution pattern associated with each local minimum, and (c) a guideline for evaluation of member forces for initial proportioning of the pattern, The application of the proposed method for evaluation of local minima is illustrated with an example problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.