Abstract

A function on Rn with multiple local minima is approximated from below, via linear programming, by a linear combination of convex kernel functions using sample points from the given function. The resulting convex kernel underestimator is then minimized, using either a linear equation solver for a linear-quadratic kernel or by a Newton method for a Gaussian kernel, to obtain an approximation to a global minimum of the original function. Successive shrinking of the original search region to which this procedure is applied leads to fairly accurate estimates, within 0.0001% for a Gaussian kernel function, relative to global minima of synthetic nonconvex piecewise-quadratic functions for which the global minima are known exactly. Gaussian kernel underestimation improves by a factor of ten the relative error obtained using a piecewise-linear underestimator (O.L. Mangasarian, J.B. Rosen, and M.E. Thompson, Journal of Global Optimization, Volume 32, Number 1, Pages 1---9, 2005), while cutting computational time by an average factor of over 28.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.