Abstract
AbstractCurrent large‐scale sea ice models represent very crudely or are unable to simulate the formation, maintenance and decay of coastal landfast ice. We present a simple landfast ice parameterization representing the effect of grounded ice keels. This parameterization is based on bathymetry data and the mean ice thickness in a grid cell. It is easy to implement and can be used for two‐thickness and multithickness category models. Two free parameters are used to determine the critical thickness required for large ice keels to reach the bottom and to calculate the basal stress associated with the weight of the ridge above hydrostatic balance. A sensitivity study was conducted and demonstrates that the parameter associated with the critical thickness has the largest influence on the simulated landfast ice area. A 6 year (2001–2007) simulation with a 20 km resolution sea ice model was performed. The simulated landfast ice areas for regions off the coast of Siberia and for the Beaufort Sea were calculated and compared with data from the National Ice Center. With optimal parameters, the basal stress parameterization leads to a slightly shorter landfast ice season but overall provides a realistic seasonal cycle of the landfast ice area in the East Siberian, Laptev and Beaufort Seas. However, in the Kara Sea, where ice arches between islands are key to the stability of the landfast ice, the parameterization consistently leads to an underestimation of the landfast area.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have