Abstract

To define factors in E. coli promoting survival to replication fork stress, we isolated insertion mutants sensitive to replication inhibitors. One insertion caused partial loss of the universally conserved GTPase, obgE/ yhbZ gene. Although obgE is essential for growth, our insertion allele supported viability until challenged with various replication inhibitors. A mutation designed to negate the GTPase activity of the protein produced similar phenotypes, but was genetically dominant. Synergistic genetic interactions with recA and recB suggested that chromosome breaks and regressed forks accumulate in obgE mutants. Mutants in obgE also exhibited asynchronous overreplication during normal growth, as revealed by flow cytometry. ObgE overexpression caused SeqA foci, normally localized to replication forks, to spread extensively within the cell. We propose that ObgE defines a pathway analogous to the replication checkpoint response of eukaryotes and acts in a complementary way to the RecA-dependent SOS response to promote bacterial cell survival to replication fork arrest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.