Abstract
To improve the robustness of a slice rotor system supported by active magnetic bearings (AMBs), here, we propose a backstepping controller based on a model-assisted extended state observer (MESO-BC). Based on a generalized extended state observer (GESO), a model-assisted extended state observer is studied with consideration of the linear model of AMBs. The model-assisted extended state observer can estimate the unknown disturbances of the active magnetic bearing system, such as model inaccuracy and external disturbance, and is superior to the generalized extended state observer with respect to observation errors and the speed of convergence errors. In addition, it is compared with the backstepping controller based on a generalized extended state observer (GESO-BC) and conventional adaptive backstepping controller (ABC), and the simulation and experimental results verify the effectiveness of the proposed method. The experimental results demonstrate that the overshoot of the MESO-BC decrease by 5.94% and 13.2% as compared with the GESO-BC and ABC under the effect of pulse disturbance, respectively, and the rotor displacement of the MESO-BC reduce by 40.3% and 54.6% as compared with the GESO-BC and ABC under the effect of the sinusoidal disturbance, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have