Abstract

Inorganic solar cells based on III-V semiconductor materials are widely used owing to their high efficiencies. In this work, we aim to improve the performance of the single heterojunction solar cell InGaP. The InGaP cell is constituted of a back surface field (BSF), a base, an emitter and a window layer with InAlAsP material. The simulation is done after optimization, modeling, and choice of the used materials and the thickness of different layers constituting the solar cell. The choice of materials whose gap energy is decreasing allows the absorption of the solar spectrum in its almost totality. Then, we varied the temperature to know its effects on the gap energy and the efficiency of the InGaP cell. The InGaP and solar cell with optimal parameters are illuminated by an AM1.5 solar spectrum through InAlAsP window layer. The simulation and optimization at 300K of short circuit current parameters (Jsc), open circuit voltage (Voc), fill factor (FF) and efficiency (?) are done using Tcad Silvaco software. The characteristics obtained are: the minimized thickness of 665 nm, electrical efficiency is about ? = 21.87% for InGaP cell, Jsc = 14.43 mA/cm2, Voc = 1.63 V, and FF = 91.21 %.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call