Abstract
An ultra-low power true random number generator (TRNG) based on a sub-ranging SAR analog-to-digital converter (ADC) is proposed. The proposed TRNG is composed of a coarse-SAR ADC with a low-power adaptive-reset comparator and a low-power dynamic amplifier. The coarse-ADC part is shared with a sub-ranging SAR ADC for area reduction. The shared coarse-ADC not only plays the role of discrete-time chaotic circuit but also reduces the overall SAR ADC energy consumption by selectively activating the fine-SAR ADC. Also, the proposed dynamic residue amplifier consumes only 48 nW and the adaptive-reset comparator generates a chaotic map with only 6-nW consumption. The proposed TRNG core occupies 0.0045 mm2 in 0.18- $\mu \text{m}$ CMOS technology and consumes 82 nW at 270-kbps throughput with 0.6-V supply. It successfully passes all of National Institute of Standards and Technology (NIST) tests, and it achieves the state-of-the-art figure-of-merit of 0.3 pJ/bit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.