Abstract
This paper presents a 10-bit successive approximation register analog-to-digital converter with energy-efficient low-complexity switching scheme, automatic ON/OFF comparator and automatic ON/OFF SAR logic for biomedical applications. The energy-efficient switching scheme achieves an average digital-to-analog converter switching energy of 63.56 CVref2, achieving a reduction of 95.34% compared with the conventional capacitor switching scheme for CDACs. With the switching scheme, the ADC can lower the dependency on the accuracy of Vcm and complexity of DAC control logic and DAC driver circuit. Moreover, dynamic circuits and automatic ON/OFF technology are used to reduce power consumption of comparator and SAR logic. The prototype is designed and fabricated in a 180 nm CMOS with a core size of 500 μm × 300 μm (0.15 mm2). It consumes 7.6 nW at 1 kS/s sampling rate and 1.8-V supply with an achieved signal-to-noise-and distortion ratio of 45.90 dB and a resulting figure of merit of 51.7 fJ/conv.-step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.