Abstract
Predicting the severity of COVID-19 remains an unmet medical need. Our objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19. We developed a logistic regression-based classifier for the severity of viral infections and validated it in multiple viral infection settings including COVID-19. We used training data (N = 705) from 21 retrospective transcriptomic clinical studies of influenza and other viral illnesses looking at a preselected panel of host immune response messenger RNAs. We selected 6 host RNAs and trained logistic regression classifier with a cross-validation area under curve of 0.90 for predicting 30-day mortality in viral illnesses. Next, in 1417 samples across 21 independent retrospective cohorts the locked 6-RNA classifier had an area under curve of 0.94 for discriminating patients with severe vs. non-severe infection. Next, in independent cohorts of prospectively (N = 97) and retrospectively (N = 100) enrolled patients with confirmed COVID-19, the classifier had an area under curve of 0.89 and 0.87, respectively, for identifying patients with severe respiratory failure or 30-day mortality. Finally, we developed a loop-mediated isothermal gene expression assay for the 6-messenger-RNA panel to facilitate implementation as a rapid assay. With further study, the classifier could assist in the risk assessment of COVID-19 and other acute viral infections patients to determine severity and level of care, thereby improving patient management and reducing healthcare burden.
Highlights
IntroductionOur objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19
Predicting the severity of COVID-19 remains an unmet medical need
Visualization of the 705 conormalized samples using all genes present across the studies using t-stochastic neighbor embedding (t-SNE), showed that there was no clear separation between the samples from patients who died and those who survived (Fig. 2a)
Summary
Our objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19. In independent cohorts of prospectively (N = 97) and retrospectively (N = 100) enrolled patients with confirmed COVID-19, the classifier had an area under curve of 0.89 and 0.87, respectively, for identifying patients with severe respiratory failure or 30-day mortality. While combining multiple weak markers through machine learning (ML) has a potential to increase test discrimination and clinical utility, applications of ML to date have led to serious overfitting and lack of clinical a doption[14] The failure of such models arises both from a lack of clinical heterogeneity in training, and from the pragmatic nature of the variable selection, which uses existing lab tests which may not be ideal for the task. A number of the lab markers are late indicators of severity since by the time they become abnormal, patient is already very sick
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.