Abstract
BackgroundWhile major progress has been made to establish diagnostic tools for the diagnosis of SARS-CoV-2 infection, determining the severity of COVID-19 remains an unmet medical need. With limited hospital resources, gauging severity would allow for some patients to safely recover in home quarantine while ensuring sicker patients get needed care. We discovered a 5 host mRNA-based classifier for the severity of influenza and other acute viral infections and validated the classifier in COVID-19 patients from Greece.MethodsWe used training data (N=705) from 21 retrospective clinical studies of influenza and other viral illnesses. Five host mRNAs from a preselected panel were applied to train a logistic regression classifier for predicting 30-day mortality in influenza and other viral illnesses. We then applied this classifier, with fixed weights, to an independent cohort of subjects with confirmed COVID-19 from Athens, Greece (N=71) using NanoString nCounter. Finally, we developed a proof-of-concept rapid, isothermal qRT-LAMP assay for the 5-mRNA host signature using the QuantStudio 6 qPCR platform.ResultsIn 71 patients with COVID-19, the 5 mRNA classifier had an AUROC of 0.88 (95% CI 0.80-0.97) for identifying patients with severe respiratory failure and/or 30-day mortality (Figure 1). Applying a preset cutoff based on training data, the 5-mRNA classifier had 100% sensitivity and 46% specificity for identifying mortality, and 88% sensitivity and 68% specificity for identifying severe respiratory failure. Finally, our proof-of-concept qRT-LAMP assay showed high correlation with the reference NanoString 5-mRNA classifier (r=0.95).Figure 1. Validation of the 5-mRNA classifier in the COVID-19 cohort. (A) Expression of the 5 genes used in the logistic regression model in patients with (red) and without (blue) mortality. (B) The 5-mRNA classifier accurately distinguishes non-severe and severe patients with COVID-19 as well as those at risk of death. ConclusionOur 5-mRNA classifier demonstrated very high accuracy for the prediction of COVID-19 severity and could assist in the rapid, point-of-impact assessment of patients with confirmed COVID-19 to determine level of care thereby improving patient management and healthcare burden.Disclosuresljubomir Buturovic, PhD, Inflammatix Inc. (Employee, Shareholder) Purvesh Khatri, PhD, Inflammatix Inc. (Shareholder) Oliver Liesenfeld, MD, Inflammatix Inc. (Employee, Shareholder) James Wacker, n/a, Inflammatix Inc. (Employee, Shareholder) Uros Midic, PhD, Inflammatix Inc. (Employee, Shareholder) Roland Luethy, PhD, Inflammatix Inc. (Employee, Shareholder) David C. Rawling, PhD, Inflammatix Inc. (Employee, Shareholder) Timothy Sweeney, MD, Inflammatix, Inc. (Employee)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.