Abstract

The opamps in a switched-capacitor (SC) pipelined ADC provide the functions of sample-and-hold, residue generation, and residue amplification [1,2]. High-performance opamps that meet the requirements for dc gain, speed, and signal range usually consume large power. We propose a scheme where the residue amplification is performed first by a coarse amplifier (CA), and then by a fine amplifier (FA). The CA generates a large-swing output that may not be accurate due to low dc gain and slow speed. Subsequently, the FA produces a small-swing output that stands as the error of the CA. The requirements for the CA and FA are different. They can be designed and optimized separately, resulting in low power dissipation. We report a 10b SC pipelined ADC to demonstrate this technique. Fabricated in 65nm CMOS, this ADC achieves 56.7dB SNDR at 200MS/s sampling rate, and consumes 5.37mW from a 1V supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.