Abstract
Layered titanium phosphates (TiPs) have many potentially important applications in ion exchange, catalysis, intercalation, and sorption. Characterization of metal local environments by solid-state 47/49Ti NMR has been difficult due to many unfavorable 47/49Ti NMR properties. In this work, we have directly characterized the local structures around Ti in several representative layered TiPs, including α-, β-, and γ-TiP, by examining the 47/49Ti static NMR spectra of these materials at an ultrahigh magnetic field of 21.1 T. The 47/49Ti chemical shielding and electric field gradient (EFG) tensors have been extracted from spectral analysis. The observed 47/49Ti spectra are mainly determined by the second-order quadrupolar interactions. The quadrupole coupling constants (CQ) are sensitive to the distortion of the TiO6 octahedron in this series of layered TiPs. Quantum mechanical calculations have been performed on several model clusters as well as periodic systems. The results indicate that, in addition to the o...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.