Abstract
To satisfy the demand of higher storage density, storing multiple-bits-per-cell technique is widely adopted. As presented in [1], a 4b/cell Flash memory by using error-detection (ED) scheme stores 2b data on two sides of a memory cell individually. Since the noise margin becomes smaller, the distribution drifts due to program disturb, data retention and temperature variation will cause higher raw bit-error-rate (RBER) if the sensing level (voltage) are not adjusted accordingly. The ED scheme can detect the drift direction by counting and storing the number of cells (Ni) with threshold voltage (VTH) below the ith sensing level (VREF i). A simple example with page size 1KB is demonstrated in Fig. 12.7.1. During a read operation, the number of cells (Ni, measured) whose VTH below VREF i is counted and compared to Ni. The ED scheme can find out a sub-optimal sensing level when Ni, measured and Ni is close enough. In this paper, a production 16Gb 45nm 4b/cell ONO-based charge-trapping (CT) Flash memory is demonstrated to achieve 6b/cell capability. Since the adjacent distributions for 6b/cell are much closer to each other, even a BCH code with ED scheme fails to correct all the patterns. However, by using a new 1-3-3 mapping and LDPC codes with a developed drift-immune soft-sensing (DI-SS) engine, the 45nm 4b/cell CT Flash memory is boosted to 6b/cell. The data flow of programming data is also shown in Fig. 12.7.1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.