Abstract
A new process was proposed by integrating a three-dimensional biofilm electrode reactor with sulfur autotrophic denitrification and electrocoagulation within the same reactor. The results indicated that under the wastewater influent condition of NO3−-N = 30 mg/L, COD = 45 mg/L, total phosphorus (TP) = 1.5 mg/L, hydraulic retention time (HRT) = 8 h, and I = 400 mA, the NO3−-N and TP removal of the proposed process reached 89.8% and 83.0%, respectively. It was observed that the electrocoagulation process improved phosphorus removal, while the simultaneous existence of heterotrophic, hydrogen, sulfur and iron autotrophic denitrifying bacteria led to enhanced and stabilized nitrogen removal. The Sulfuritalea hydrogenivorans sk43H and Sulfuricella denitrificans skB26 were found as the dominant denitrifying bacteria in the electrocoagulation section and the section of biofilm electrode with sulfur filler, respectively. As compared to conventional technologies, the proposed new process can achieve simultaneous, stable and deep nitrogen and phosphorus removal from wastewater treatment plant effluent with low organic carbon content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.