Abstract

In this study, an anaerobic/aerobic/anoxic process (referred to as an AOA process) using a sequencing batch reactor (SBR) was proposed for simultaneous phosphorus and nitrogen removal from wastewater. The AOA process was stably operated over more than one year when a certain amount of carbon substrate (40 mg-C/L in a reactor) was supplemented to inhibit aerobic phosphate uptake. The average nitrogen and phosphorus removal efficiencies were 83% and 92%, respectively. It was demonstrated that phosphate-accumulating organisms (PAOs) capable of utilizing nitrite as an electron acceptor, the so-called denitrifying phosphate-accumulating organisms (DNPAOs), could exist in the AOA process. Moreover, the ratio of anoxic phosphate uptake rate (PUR) to aerobic PUR (anoxic/aerobic PUR ratio), which indicates the fraction of DNPAOs in total PAOs, was experimentally evaluated. The results indicate that the AOA process has a much larger anoxic/aerobic PUR ratio than the conventional A 2O (anaerobic/anoxic/aerobic) and AO (anaerobic/aerobic) processes. In conclusion, the AOA process allows DNPAOs to take an active part in simultaneous nitrogen and phosphorus removal in an SBR when a suitable amount of carbon substrate is supplied at the start of aerobic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.