Abstract

AbstractDue to the widespread use of carbon nanotube (CNT)‐reinforced polymers in various industries, investigating the dynamic mechanical response of these materials under impact loading is of significant importance. A three‐dimensional viscoelastic (VE)–viscoplastic (VP) constitutive model for CNT/epoxy nanocomposites is developed. A proper rheological model is established using the generalized Maxwell model to represent the VE behavior and propose an exponential function to express the elasto‐VP response. Employing an empirical logarithmic relationship to estimate material properties at different strain rates, the VP behavior is modeled based on the overstress concept. The 3D numerical discretization of the proposed rate‐dependent material model is also carried out to develop a user‐defined material model (UMAT) for the commercial finite element (FE) software of Abaqus. The performed FE simulations based on the proposed rate‐dependent constitutive material can properly capture stress relaxation and hysteresis behaviors of the nanocomposites. Comparing the estimated tensile and shear stress–strain curves through developed material models with experimental measurements, an excellent agreement is observed.Highlights Tensile/shear properties of CNT/epoxy are measured at three strain rates. An empirical constitutive model is proposed for any arbitrary strain rates Viscoplastic behavior is captured based on over‐stress concept A 3D incremental form of a viscoelastic–viscoplastic material model is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.