Abstract

The conventional conductive three-dimensional (3D) host fails to effectively stabilize lithium metal anodes (LMAs) due to the internal incongruity arising from nonuniform lithium-ion gradient and uniform electric fields. This results in undesirable Li "top-growth" behavior and dendritic Li growth, significantly impeding the practical application of LMAs. Herein, we construct a 3D hierarchical host with gradient-distributed dielectric properties (GDD-CH) that effectively regulate Li-ion diffusion and deposition behavior. It comprises a 3D carbon fiber host modified by layer-by-layer bottom-up attenuating Sb particles, which could promote Li-ion homogeneously distribution and reduce ion concentration gradient via unique gradient dielectric polarization. Sb transforms into superionic conductive Li3Sb alloy during cycling, facilitating Li-ion dredging and pumps towards the bottom, dominating a bottom-up deposition regime confirmed by COMSOL Multiphysics simulations and physicochemical characterizations. Consequently, a stable cycling performance of symmetrical cells over 2000 h under a high current density of 10 mA cm-2 is achieved. The GDD-CH-based lithium metal battery shows remarkable cycling stability and ultra-high energy density of 378 Wh kg-1 with a low N/P ratio (1.51). This strategy of dielectric gradient design broadens the perspective for regulating the Li deposition mechanism and paves the way for developing high-energy-density lithium metal anodes with long durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.