Abstract

The combination of highly active materials with judicious nanostructures is crucial to develop high-performance electrocatalysts for oxygen evolution reaction (OER), which involves sluggish multistep electron transfer processes. Herein, TiN nanowire arrays are used as conductive trunks to support active Ni-doped Co3O4 (Ni0.27Co2.73O4) nanosheets to construct a binder-free three-dimensional (3D) electrode for OER. In the core@shell configuration, the TiN nanowire arrays possess a single-crystal-like structure favoring charge migration and the ultrathin Ni0.27Co2.73O4 nanosheets have a mesoporous structure providing more active sites. The hierarchically branched morphology, high conductivity and large surface area can be achieved simultaneously by the optimization in composition and nanostructure, which contributes to excellent electrochemical performances. The TiN@Ni0.27Co2.73O4 electrode shows much better OER activity than the Ni-doped Co3O4 nanosheets deposited on planar Ti substrate and low conductive TiO2 nanowire arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.