Abstract

An ultra-low voltage and ultra-low power Digital-Based Operational Transconductance Amplifier (DB-OTA) is presented and demonstrated on silicon in 180 nm CMOS. The DB-OTA is designed using digital standard cells, hence benefitting from technology scaling as much as digital circuits, while also being technology- and design-portable, and requiring minimal design and integration effort compared to conventional analog-intensive OTAs. The fabricated DB-OTA testchip occupies a compact area of 1,426 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , operates at supply voltages down to 300 mV, and consumes only 590 pW while driving a capacitive load of 80pF. Its measured Total Harmonic Distortion (THD) is lower than 5% at a 100-mV input signal swing. Based on these results, the proposed DB-OTA achieves 2,101 V <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> small-signal figure of merit (FOM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</sub> ) and 1,070 large-signal figure of merit (FOM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</sub> ). To the best of the authors' knowledge, the power is the lowest reported to date in an OTA, and the achieved figures of merit are the best in sub-500 mV OTAs reported to date. The low cost, the low design effort and the high power efficiency of DB-OTA make it well suited for purely harvested low-frequency analog interfaces in sensor nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.