Abstract

A quantitative model which took into account the 3-D effects of pores on the local stress/strain fields was developed to quantify the fatigue weak-link density and strength distribution in an A713 Al alloy. In the model, a digital pore structure was first constructed using single-sized pores (15μm in diameter) that had a total volume fraction same as that of the pores measured experimentally in the alloy. In the surface randomly selected by cross-sectioning through the simulated pore structure, the stress and strain fields around each pore in the surface were quantified using a 3-D finite element model under an applied cyclic stress, and the fatigue crack incubation life at the pore was estimated with a micro-scale Manson-Coffin equation. The quantified rate of fatigue crack initiation at these pores was found to be a Weibull function of the applied stress, which was consistent with the experimental result measured in the alloy. The density and strength distribution of fatigue weak-links could then be derived and used to evaluate the fatigue crack initiation properties of the alloy. By matching to the experimentally measured fatigue weak-links, the minimum critical pore size for fatigue crack initiation was determined to be 11μm in diameter at the cyclic maximum stress of 100% yield strength of the alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.