Abstract

A physics-based closed form analytical model for the reverse leakage current of a high voltage junction barrier Schottky (JBS) diode is developed and shown to agree with experimental results. Maximum electric field “seen” by the Schottky contact is calculated from first principles by a 2-dimensional method as a function of JBS diode design parameters and confirmed by numerical simulations. Considering thermionic emission under image force barrier lowering and quantum mechanical tunneling, electric field at the Schottky contact is then related to reverse current. In combination with previously reported forward current and resistance models, this gives a complete I– V relationship for the JBS diode. A layout of interdigitated stripes of P–N and Schottky contacts at the anode is compared theoretically with a honeycomb layout and the 2-D model is extended to the 3-D honeycomb structure. Although simulation and experimental results from 4H–Silicon Carbide (SiC) diodes are used to validate it, the model itself is applicable to all JBS diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.