Abstract

AbstractEfficient and accurate flood inundation predictions can provide useful information for flood risk mitigation and water resource management. In this paper, we propose a new modelling method, LoHy + , which can be applied to efficiently simulate the spatiotemporal evolution of flood inundation with reasonable accuracy. The method integrates a low-fidelity two-dimensional (2D) hydrodynamic model and a mapping module to estimate water depth in a catchment during floods. The performance of the proposed modelling method was evaluated using a real-world catchment of approximate 2,000 km2, in the Southern Murray–Darling Basin, Australia. The results show that there is a good agreement between flood inundation obtained from the proposed method and that simulated using a high-fidelity 2D hydrodynamic model. The proposed method is much more efficient than the high-fidelity 2D hydrodynamic model, which makes it an alternative method for applications requiring many model runs or long simulation durations. Also, the LoHy+ model has the potential to be applied in flood inundation forecast, flood risk mitigation design water resource management, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call