Abstract

AbstractThis paper presents a 28 GHz GaN enhanced single‐sideband time‐modulated phased array (ESTMPA), based on a monolithic microwave integrated circuit (MMIC), including both a time‐modulated circuit and an RF front‐end module (FEM). The time‐modulated circuit mainly consists of a numerically controlled attenuator to balance the amplitude, compact phase shifters to generate balanced signals, a reconfigurable power divider, and a quadrature power divider. The FEM mainly consists of a low noise amplifier and a power amplifier, featuring codesign of input/output networks. Based on the in‐phase/quadrature (I/Q) composite modulation technique, a stepped modulation waveform, realized by the time‐modulated circuit, is used to enable a weighted array of phases. This helps generate a scanned beam at the first positive sideband and eliminate the undesired sidebands. The final MMIC‐based four‐element ESTMPA shows a relative suppression level of −16 dB at the positive fifth sideband and −13 dB at the zeroth sideband, and a much higher level at the other undesired sidebands. As a result, a wider signal bandwidth and a higher harmonic efficiency are achieved. In addition, the ESTMPA shows a beam sweeping angle from −30° to 30° in far‐field measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.