Abstract

This article presents a 26–30 GHz gallium nitride (GaN) high electron mobility transistor (HEMT) low-noise amplifier (LNA) for fifth-generation base station applications. In the proposed design, a series inductor-based stability enhancement technique was utilized to improve the reverse isolation and stability performance of the amplifier and to mitigate the effect of the parasitic capacitance of the GaN HEMT device. To validate the concept of the design, a three-stage GaN HEMT LNA was designed and fabricated in a 0.15-um GaN on silicon carbide technology. The demonstrated design achieved a gain of 20.2 dB, a noise figure of 2.4–2.5 dB, an output 1-dB compression point of 17.2 dBm, and an output third-order intercept point of 32.2 dBm. The design also attained stability (μ criterion) up to 7.7 at the operating frequency. The implemented design consumed power of 320 mW with a nominal supply of 10 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.