Abstract

We have investigated a 25.75-year old leaching experiment to improve our understanding of the mechanisms controlling glass dissolution in geological disposal conditions. A SON68 glass block was leached in slowly renewed synthetic groundwater (at 90 °C, 100 bar) in contact with some pieces of granite and Ni–Cr–Mo alloy as environmental storage materials. One hundred and sixty-three samplings were carried out over the entire duration of the experiment and were used to calculate the mean thickness of the altered glass (28 (±9) μm) and the glass dissolution rate. After few months, the rate remained very constant at 6 × 10 −3 g m −2 d −1 which is about 20 times higher than the residual rate measured in a batch reactor at the same temperature. At the end of the experiment, mainly SEM analyses were performed on the entire glass block. Surprisingly, the glass alteration layer has neither a homogeneous thickness, nor a homogeneous morphology. The location of the sampling valve (at half height of the glass block) seems to divide the glass block into two parts. In the upper half (above the sampling valve), the general morphology of the alteration layer consists in a relatively simple and uniform gel and some secondary phases which are rare-earth phosphates. The mean measured thickness of this alteration layer is 6.7 (±0.3) μm. However, in the lower half of the glass block, the gel is globally larger and frequently contains rounded shapes which are rare-earth phosphates. This section is edged by secondary phases bearing Mg, Na, Zn and Ni. The mean measured thickness is 81.3 (±1.1) μm in the lower half. In this experiment, the flow rate which leads to the hydrodynamic transport of the soluble species must be a key factor for the local glass alteration process. We have also shown that this unexpected behavior is likely due to heterogeneities of the chemistry of the solution. This conclusion is supported by the behavior of Mg. This element, supplied by the inlet solution, precipitates with Si and forms clay minerals and therefore weakens the passivating properties of the gel. Mg-rich clay minerals are only observed in the lower half of the glass block. Further investigations are necessary to better understand the coupling between the hydrodynamics and chemistry in this experiment. However, based on this study, we can conclude that glass in disposal should be very sensitive to the water renewal near the glass surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.