Abstract

This brief presents a fast-lock 2.4-GHz fractional-N phase-locked loop (PLL) for ultralow-power applications. To minimize the power consumed by all the other circuits except for the main oscillator, we propose a master-slave PLL structure in which a low-frequency master PLL is followed by a slave injection-locked oscillator operating at high frequency. A frequency-error compensation circuit is also implemented in the slave oscillator to eliminate possible drift in the free-running frequency. With a fractional-N coarse-lock unit in the master PLL and a fine frequency initialization unit in the slave oscillator, the PLL supports two fast-lock modes: 1) start-up locking from deep-power-down mode and 2) instantaneous relocking from standby mode. The implemented PLL in 65-nm complementary metal-oxide-semiconductor (CMOS) consumes 250 μW from a 0.8-V supply, demonstrating a power efficiency of 0.102 mW/GHz. The PLL performs the two fast-lock operations with lock times of less than 22 μs from deep power down and 1 μs from standby, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.