Abstract

Ultra-wideband impulse based radio systems use Gaussian monocycle pulses as transmitted signals at the transmitting end and as template signals at the receiving end. In this paper we present a new fully integrated differential Gaussian monocycle pulse generator in 0.18 µm complementary metal–oxide–semiconductor (CMOS) technology. Here the Gaussian monocycle pulse is generated from triangular shaped pulse by a single differentiator circuit and it is then converted into differential form by using a single input to dual output amplifier. The developed circuit occupies a small area of 0.06 mm2 and consumes a total power of 44 mW at 1.8 V. The transmission of the generated differential Gaussian monocycle pulse at a rate of 1.4 Gbps through integrated dipole antenna in the same Si-substrate for intrachip communication in future ultralarge scale integrated circuit (ULSI) is verified by simulation and results are presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.