Abstract
This paper describes the design and implementation of a fully monolithic 16-b, 1 Msample/s, low-power A/D converter (ADC). An on-chip 32-b custom microcontroller calibrates and corrects the pipeline linearity to within 0.75 LSB integral nonlinearity (INL) and 0.6 LSB differential nonlinearity (DNL). High speed and low power are achieved using a pipelined architecture. Errors resulting from capacitor mismatches, finite op-amp open loop gain, charge injection and comparator offset are removed through self-calibration. Coefficients determined during calibration are stored on chip, digitally correcting the pipeline ADC in real time during normal conversion, Full-scale errors are removed through self-calibration and an-chip multiplication. Linearity errors due to capacitor voltage coefficients are reduced using a curve fit algorithm and on-chip ROM. Digital cross-talk errors resulting from the microcontroller running at a rate of ten times the analog sampling rate have prevented implementations of fully monolithic converters of this performance class in the past. Mismatches in cross-talk due to different digital timing between calibration and correction lead to linearity errors at critical correction points. Experimental analysis and circuit techniques which overcome these problems are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.