Abstract

This paper presents a synthesized 2 GHz fractional-N ADPLL with a dual-referenced interpolating time-to-digital converter (TDC). The proposed TDC measures fractional phase by referencing adjacent two integer phases and achieves gain matching without any calibration scheme. It also improves linearity with little sensitivity to process, voltage, and temperature variations by averaging nonlinearity errors of opposite polarities. Except for digitally controlled oscillator (DCO), the PLL is designed only by RTL-level behavioral descriptions and synthesized with a standard cell library. The PLL is implemented in 65 nm CMOS with an active area of 0.047 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and achieves a stable in-band phase noise of lower than -100 dBc/Hz in a wide range of supply voltage from 1 to 1.4 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.