Abstract

Time-dependent wave packet calculations of the (A (2)A(2)<--X (2)B(1)) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X (2)B(1) ground state ab initio potential energy surface reported by Peterson is used together with his corresponding A (2)A(2) state surface or the revised surface of the A (2)A(2) state by Xie and Guo. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A (2)A(2) potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A (2)A(2) state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A (2)A(2) state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.