Abstract

Abstract In this study, we developed an emulator of the Community Multiscale Air Quality (CMAQ) model by employing a one-dimensional (1D) convolutional neural network (CNN) algorithm to predict hourly surface nitrogen dioxide (NO2) concentrations over the most densely populated urban regions in Texas. The inputs for the emulator were the same as those for the CMAQ model, which includes emission, meteorological, and land-use/land-cover data. We trained the model over June, July, and August (JJA) of 2011 and 2014 and then tested it on JJA of 2017, achieving an index of agreement (IOA) of 0.95 and a correlation of 0.90. We also employed temporal threefold cross validation to evaluate the model’s performance, ensuring the robustness and generalizability of the results. To gain deeper insights and understand the factors influencing the model’s surface NO2 predictions, we conducted a Shapley additive explanations analysis. The results revealed solar radiation reaching the surface, planetary boundary layer height, and NOx (NO + NO2) emissions are key variables driving the model’s predictions. These findings highlight the emulator’s ability to capture the individual impact of each variable on the model’s NO2 predictions. Furthermore, our emulator outperformed the CMAQ model in terms of computational efficiency, being more than 900 times as fast in predicting NO2 concentrations, enabling the rapid assessment of various pollution management scenarios. This work offers a valuable resource for air pollution mitigation efforts, not just in Texas, but with appropriate regional data training, its utility could be extended to other regions and pollutants as well. Significance Statement This work develops an emulator of the Community Multiscale Air Quality model, using a one-dimensional convolutional neural network to predict hourly surface NO2 concentrations across densely populated regions in Texas. Our emulator is capable of providing rapid and highly accurate NO2 estimates, enabling it to model diverse scenarios and facilitating informed decision-making to improve public health outcomes. Notably, this model outperforms traditional methods in computational efficiency, making it a robust, time-efficient tool for air pollution mitigation efforts. The findings suggest that key variables like solar radiation, planetary boundary layer height, and NOx (NO + NO2) emissions significantly influence the model’s NO2 predictions. By adding appropriate training data, this work can be extended to other regions and other pollutants such as O3, PM2.5, and PM10, offering a powerful tool for pollution mitigation and public health improvement efforts worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call