Abstract
A 16 nm all-digital auto-calibrating adaptive clock distribution (ACD) enhances processor core performance and energy efficiency by mitigating the adverse effects of high-frequency supply voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DD</sub> ) droops. The ACD integrates a tunable-length delay prior to the global clock distribution to prolong the clock-data delay compensation in core paths for multiple cycles after a droop occurs to provide a sufficient response time for clock frequency (F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CLK</sub> ) adaptation. A dynamic variation monitor (DVM) detects the onset of the droop and interfaces with an adaptive control unit and clock divider to reduce F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CLK</sub> in half at the TLD output to avoid path timing-margin failures. An auto-calibration circuit enables in-field, low-latency tuning of the DVM to accurately detect VDD droops across a wide range of operating conditions. The auto-calibration circuit maximizes the V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DD</sub> -droop tolerance of the ACD while eliminating the overhead from tester calibration. From 109 die measurements across a wafer, the auto-calibrating ACD recovers a minimum of 90% of the throughput loss due to a 10% V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DD</sub> droop in a conventional design for 100% of the dies. ACD measurements demonstrate simultaneous throughput gains and energy reductions ranging from 13% and 5% at 0.9 V to 30% and 13% at 0.6 V, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have