Abstract

The [ 14C]2-deoxyglucose (2-DG) metabolic mapping technique has been used to identify the regions responding with an augmented rate of metabolism following focal electrical stimulation of various sites within the lateral septal nucleus and medial septal nucleus/diagonal band (MSN/DB) complex in the rat. Since 2-DG uptake has been correlated with rates of functional activity, it was the intention of this study to suggest the anatomical substrates underlying various physiological and behavioral responses elicited by stimulation of the septal area. The results show that stimulation of any region within the lateral septal nucleus produced a profound bilateral activation of both the lateral septal nucleus, as well as the hippocampal formation. While stimulation of a number of different fiber systems associated with the lateral septum could contribute to the observed pattern of labeling, the data suggest that, functionally, a major consequence of such stimulation is the antidromic activation of CA3 → lateral septum fibers to axonal branch points, beyond which, orthodromic propagation of the impulse produces activation in CA3 target regions, including subfields CA1 and CA3, as well as the lateral septal nucleus, bilaterally. In addition, regions typically manifesting metabolic activation following stimulation of the lateral septal nucleus included the ipsilateral diagonal band of Broca, nucleus accumbens, lateral preoptic area and lateral hypothalamus, posteriorly, and the prelimbic cortex, anteriorly. Occasionally, target regions of the postcommissural fornix, including the medial mammillary nucleus and anterior thalamic nuclei were also activated following stimulation of the lateral septal nucleus. In contrast to the widespread pattern of activation resulting from stimulation of the lateral septal nucleus stimulation of the MSN/DB complex produced activation which was largely confined to the mediall forebrain bundle. In a final phase of the experiment, afterdischarge activity was elicited by sodium penicillin injection into the lateral septal nucleus. Such treatment produced more widespread 2-DG uptake, including more extensive activation within the lateral septal nucleus, hippocampal formation, amygdala, and thalamus. Additionally, the prefrontal cortex and temporal neocortex were activated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call