Abstract

A latch-type comparator with a dynamic bias pre-amplifier is implemented in a 65-nm CMOS process. The dynamic bias with a tail capacitor is simple to implement and ensures that the pre-amplifier output nodes are only partially discharged to reduce the energy consumption. The comparator is analyzed and compared to its prior art in terms of energy consumption and input referred noise voltage. First-order equations are presented that show how to optimize the pre-amplifier for low noise and high gain. Both the dynamic bias comparator and the prior art are implemented on the same die and measurements show that the dynamic bias can reduce the average energy consumption by about a factor 2.5 for the same input-equivalent noise at an input common-mode level of half the supply voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.