Abstract

A highly integrated, wearable electrical impedance tomography (EIT) belt for neonatal thorax vital multiple sign monitoring is presented. The belt has 16 active electrodes. Each electrode has an application-specific integrated circuit (ASIC) connected to it. The ASIC contains a fully differential current driver, a high-performance instrumentation amplifier, a digital controller, and multiplexors. The belt features a new active electrode architecture that allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It provides intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement, providing superior common-mode rejection ratio. The ASIC was designed in a CMOS 0.35-μm high-voltage technology. The high-specification EIT belt has an image frame rate of 122 fps, a wide operating bandwidth of 1MHz, and multi-frequency operation. It measures impedance with 98% accuracy and has less than 0.5Ω and 1° variation across all possible channels. The image results confirmed the advantage of the new active electrode architecture and the benefit of wideband, multi-frequency EIT operation. The system successfully captured high-quality lung-respiration EIT images, breathing cycle, and heart rate. It can also provide boundary-shape information by using an array of MEMS sensors interfaced to the ASICs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.