Abstract

A flip-chip co-packaged linear transimpedance amplifier (TIA) in 16-nm fin field effect transistor (FinFET) CMOS demonstrating 112-Gb/s four-level pulse-amplitude modulation (4-PAM) with −8.2-dBm sensitivity is presented in support for optical receivers required in the next-generation intra-data center links. A proposed three-stage TIA is comprised of a shunt-feedback stage followed by digitally programmable continuous-time linear equalizers (CTLEs) and a variable gain amplifier (VGA). Broadband low-noise design is achieved by having the first stage with much lower bandwidth (BW) followed by the proposed BW recovering CTLEs. A low-power design is supported by the inverter-based single-ended architecture with a single-ended-to-pseudo-differential conversion in the last stage. TIA’s BW extension is further supported by optimizing the photodiode-to-receiver (PD-to-RX) interconnect and utilizing several inductive peaking techniques. It achieves 63-dB <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega $ </tex-math></inline-formula> gain, 32-GHz BW, and an average input-referred current noise density of 16.9 pA/ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sqrt {\text {Hz}}$ </tex-math></inline-formula> while operating at 0.9-V supply and consuming 47-mW power. Opto-electrical measurements are performed on a co-packaged prototype comprised of identical proposed TIAs in CMOS with combinations of various commercial PDs and PD-to-RX interconnect lengths confirming 112-Gb/s 4-PAM reception meeting pre-forward error correction (FEC) symbol error rate (SER) of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4.8 \times 10 ^{-4}$ </tex-math></inline-formula> without any post-equalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.