Abstract

A 10-MS/s-to-100-kS/s power-scalable fully differential comparator-based switched-capacitor (CBSC) 10-bit pipelined analog-to-digital converter (ADC) is presented. To operate over a wide range of sampling rates, an adaptive biasing technique is proposed to enhance both linearity and signal-to-noise-plus-distortion ratio (SNDR) at low sampling rates. This ADC has been fabricated in a 0.18-?m standard CMOS process. It achieves 62.3-dB spurious-free-dynamic range (SFDR) and 53.3-dB SNDR while being sampled at 10 MS/s and consuming 1.95 mW from a 1.8-V power supply, which obtains a figure of merit of 510 fJ/step. With the utilization of adaptive biasing, the SNDR increases from 53.3 to 56.4 dB at most when decreasing the sampling rate. In addition, its power consumption continuously reduces from 1.95 mW (10 MS/s) to 158.4 ?W (100 kS/s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.