Abstract

Current-mode DC-DC converters offer various advantages over voltage-mode DC-DC converters such as much simpler frequency compensation, automatic over-current protection, and faster transient response [1,2]. For current-mode control, however, an accurate inductor current sensor is required which can be very sensitive to noise. Another concern in designing a current-mode DC-DC converter is the instability under certain operating conditions known as subharmonic oscillation. A peak-current-mode buck converter, for example, may become unstable when its switching duty cycle is larger than 50% and slope compensation is required to ensure stable operation. While both current-mode and voltage-mode DC-DC converters are conventionally controlled by voltage-domain controllers that use voltage signals as control variables, the works in [3] and [4] have shown that voltage-mode DC-DC converters can also be controlled by time-domain controllers consisting of only time-domain circuits such as voltage-controlled oscillators, voltage-controlled delay lines, and phase detectors (PD). Because time-domain controllers do not use any wide-bandwidth error amplifier, voltage comparator, and passive RC filter required for conventional voltage-domain controllers, they consume much less power and occupy smaller silicon area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.