Abstract
Intravascular Ultrasound ultrasonic imaging (IVUS) can microscopically image blood vessels and reveal tissue layers from within the blood vessel lumen. It has high tissue penetration ability for lesion classification and can image through blood. Compared to optical techniques, however, IVUS has lower resolution arising from low acoustic bandwidths which cannot resolve sharp edges. The presented 100-V withstanding Analog-Front-End (AFE) was developed to enable a high resolution, low cost IVUS system using a high-bandwidth focused polymer transducer with 40-MHz center frequency. The fabricated AFE interfaced with the transducer with minimal insertion loss, could withstand and duplex 100-V high voltage pulses and echo signal, and had a total signal chain gain of 9.8 dB. The AFE achieved a signal-to-noise ratio (SNR) of 20.1 dB including the insertion loss of the high-impedance transducer. AFE SNR was limited by input impedance required for high-voltage pulse clamping circuitry, but was sufficient for IVUS echo reception.Clinical Relevance- This work has the potential to enable much higher resolution, and potentially cheaper, IVUS imaging in blood vessels by integrating low-cost acoustic transducers with interface amplifiers directly on the catheter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.