Abstract

A high-speed serial, 10-Gb/s, passive optical network (PON) is a good candidate for a future PON system. However, there are several issues to be solved in extending the physical speed to 10Gb/s. The issues focused on here are not only the data rate, which is eight times higher than that of a conventional GE-PON, but also the instantaneous amplification and synchronization of AC-coupling burst-input data without a reset signal. An input amplifier with data-edge detection can both detect levelvarying input due to AC-coupling and respond to the first bit of a burst packet. Another issue discussed here is tolerance to long consecutive identical digits (CIDs). A burst-mode clock-and-data recovery (CDR) using dual gated VCOs (G-VCOs) is designed for 10-Gb/s operation. The relation between the frequency difference of the dual G-VCOs and CID tolerance is derived with a frequency tunable G-VCO circuit. The burst-mode CDR IC is implemented in a 0.13-μm CMOS process. It successfully operates at a data rate of 10.3125Gb/s. The CDR IC using the edge-detection input amplifier and the G-VCO CDR core achieves amplification and synchronization in 0.2ns with AC-coupling without a reset signal. The IC also demonstrates 1001bits of CID tolerance, which is more than enough tolerance for 65-bit CIDs in the 64B/66B code of 10 Gigabit Ethernet. Measured data suggest that dual G-VCOs on a die have over a 20-MHz frequency difference and that the frequency adjusting between the G-VCOs is effective for increasing CID tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.